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Chapter 1   

An Introduction to cytochrome c 

1.1 Discovery of cytochrome c 

In 1886, Charles A. MacMunn first described respiratory pigments and named them 

myohematin or histohematin1. In 1925, David Keilin rediscovered these cellular pigments and 

named them ‘cytochromes’. He found that these heme group containing proteins were found not 

only in plants and animals but also in yeast and bacteria. He further classified cytochromes 

according to their lowest energy absorption band in their reduced state and named them 

cytochrome a (604nm), b (564nm) and c (550nm)2. Keilin laid out the basic picture of the 

respiratory chain in the 1920’s. Due to the presence of an iron (Fe) atom in heme it was 

believed that cytochrome c could act as an electron carrier by undergoing oxidation reduction 

reactions.  

Until nearly two decades ago cytochrome c protein was known to assume the role of a 

passive electron carrier in the electron transport chain shuttling electrons from cytochrome bc1 

(Complex III) to cytochrome c oxidase (Complex IV). Wang et al. were the first to publish that 

cytochrome c is an essential component of the programmed cell death process or type II 

apoptosis3. The paper pointed to cytochrome c as one of several factors to influence the dATP 

dependent activation of CPP32 (caspase 3). They also performed immuno-depletion of 

cytochrome c from HeLa, HEK293 as well as U937 cells and observed that such cells lost their 

ability to activate caspase 3 to initiate apoptosis. However, this phenomenon was reverted when 

cytochrome c was added to the immuno-depleted extracts.   

Cytochrome c is a positively charged globular protein, 12.4kDa in size. It contains a 

heme group covalently attached via thioether bonds with cysteines 14 and 17 of the peptide 
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chain. The Fe in the heme group is coordinated by His18 and Met80 residues. Cytochrome c is 

a nuclear gene encoded protein which is translated in the cytoplasm as apocytochrome c. The 

heme group is attached to apocytochrome c upon its translocation to mitochondria. Under 

normal (i.e., non-apoptotic) conditions cytochrome c is located in the intermembrane space of 

mitochondria and is mostly associated with the outer surface of the inner mitochondrial 

membrane by electrostatic and hydrophobic interaction with the negatively charged 

phospholipid, cardiolipin4.   

1.2 Functions of cytochrome c 

Cytochrome c protein is involved in many diverse and important functions mainly 

oxidative phosphorylation, cell apoptosis, ROS scavenging, cardiolipin peroxidation, and ROS 

formation via p66shc (Fig. 1).  

Figure 1. Important roles of cytochrome c in a cell 5. 
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1.2.1 Role of cytochrome c in oxidative phosphorylation 

The oxidative phosphorylation machinery comprises of electron transport chain (ETC) 

and ATP synthase (Complex V). It is located in the inner mitochondrial membrane. Electrons 

from NADH and FADH2 are fed into the ETC, and after passing through the different complexes 

in the ETC reach oxygen, the final electron acceptor, which is then reduced to water. The ETC 

has four complexes: NADH dehydrogenase (Complex I), succinate dehydrogenase (Complex 

II), bc1 complex (Complex III) and cytochrome c oxidase (CcO; Complex IV). Cytochrome c 

functions as an electron carrier by transferring electrons from Complex III to Complex IV. As 

electrons are passing through the complexes, protons are pumped from the mitochondrial 

matrix into the mitochondrial intermembrane space via complexes I, III and IV. This results in a 

proton gradient with the inter membrane space having a higher hydrogen ion concentration than 

in the matrix. This proton gradient leads to a resultant proton motive force (consisting of the 

mitochondrial membrane potential ∆Ψ, which is the major contributing factor in eukaryotes, and 

∆pH) that is used by the ATP synthase to generate ATP from ADP and phosphate. This ATP 

generation is coupled to the transport of protons back into the mitochondrial matrix.  

Cytochrome c, as mentioned earlier, acts as an electron carrier from Complex III to 

Complex IV transferring one electron at a time. It takes four such electron transfers for oxygen 

to be reduced to water. ATP, the end product of OxPhos, acts as a feedback inhibitor of the 

process in an uncompetitive manner6. Arginine 91 of cytochrome c serves as a binding site for 

ATP thereby converting the otherwise high affinity cytochrome c-CcO binding site into a low 

affinity one7. 
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1.2.2 Role of cytochrome c in apoptosis 

It is now accepted that under stress conditions, cytochrome c is released from 

mitochondria into the cytosol. The released cytochrome c binds to Apaf-1 protein in the cytosol, 

which in the presence of dATP undergoes heptamerization to form the apoptosome8. The 

apoptosome then recruits procaspase 9. This binding leads to activation of the zymogen to 

active caspase 9. Caspase 9 in turn activates caspases 3 and 7 by cleavage. Caspases 3 and 7 

are known to be the executioner caspases of apoptosis.  

Genetic studies have brought to light, the importance of cytochrome c in the intrinsic 

(mitochondrial or type II) pathway of apoptosis. In their 2005 paper, Hao et al reported that 

lysine 72 of the cytochrome c protein is critical for its role in apoptosis10. They generated a 

mouse model with a mutation of lysine 72 to alanine (Lys72Ala) which retained normal 

respiration but lacked normal apoptotic function. This was due to a failure of mutant cytochrome 

c to initiate oligomerization of Apaf-1. The Lys72Ala mutant mice were embryonic lethal and 

exhibited developmental defects of brain.  In 2000, Newmeyer et al reported that trimethylation 

of Lys72 reduces the ability of cytochrome c protein to activate caspases in cell free systems 

while maintaining normal oxidative phosphorylation levels.11 In addition, De La Rosa et al 

published that specific nitration of solvent exposed residue, Tyr74 on cytochrome c rendered it 

incapable of performing its pro-apoptotic function while retaining its peroxidase activity.12 These 

studies demonstrate the necessity of cytochrome c protein for maintaining proper tissue 

development and homeostasis. 

1.2.3 Cytochrome c as a ROS scavenger 

Reactive oxygen species (ROS) are highly reactive byproducts of oxidative metabolism 

and it is known that mitochondria are the main generator of ROS in a cell13. ROS include 

superoxide (O2
-), hydrogen peroxide (H2O2) and hydroxyl (.OH) free radicals. When superoxide 
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is formed it is quickly converted to hydrogen peroxide by mitochondrial superoxide dismutase 

(Mn-SOD), which is further detoxified by catalase to water. The complexes I and III of electron 

transport chain and the reduced ubiquinol pool are the major contributors to ROS formation in 

mitochondria5. In addition, in their 2012 paper, Quinlan et al report that under low succinate 

levels and when complexes I and III are inhibited, complex II produces superoxide at high 

rates14. 

Within the mitochondrial intermembrane space, oxidized cytochrome c can act as a ROS 

scavenger by its ability to convert superoxide back to oxygen. This reduced cytochrome c then 

passes on the electron to cytochrome c oxidase thereby regenerating the oxidized cytochrome c 

which can carry on with superoxide scavenging.  

1.2.4 Cytochrome c as a cardiolipin peroxidase 

Cytochrome c is attached to the inner mitochondrial membrane by anionic 

phospholipids, mainly mitochondria-specific cardiolipin. Its structure is unique with four acyl 

chain groups. This phospholipid composes nearly 20% of the mitochondrial lipid pool. It is 

believed that 15-20% of mitochondrial cytochrome c is bound to cardiolipin15. Cytochrome c can 

either be loosely or tightly attached to cardiolipin. The loose attachment is by means of 

electrostatic interactions between positively charged lysine residues of cytochrome c and 

negatively charged phosphate groups of cardiolipin4. Hydrophobic interactions are at play when 

cytochrome c is tightly attached to cardiolipin. This tight conformation is the result of the 

insertion of an acyl chain of cardiolipin into the hydrophobic pocket of cytochrome c while 

keeping the other acyl chains embedded in the inner membrane.  

Under apoptotic stress, 40% of cardiolipin translocates from the inner mitochondrial 

membrane to the outer membrane where it forms complexes with cytochrome c, activating the 

peroxidase activity of the protein16. The peroxidation of cardiolipin results in decreased affinity of 
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cytochrome c for oxidized cardiolipin thus increasing the availability of the soluble form of 

cytochrome c. Also, peroxidation of cardiolipin affects the integrity of the outer membrane and 

facilitates the formation of the mitochondrial permeability transition pore through which 

cytochrome c and other proapoptotic factors are released into the cytosol5. 

1.2.5 Cytochrome c and p66 shc  

p66shc is a splice variant of two cytoplasmic adaptor proteins, p52shc/p46shc which transfer 

intracellular signals from activated tyrosine kinases to Ras17. Instead of Ras regulation, p66shc 

finds its function in intracellular pathways that regulate ROS metabolism and apoptosis. Like 

cytochrome c, p66shc localizes to the intermembrane space of mitochondria. It is a redox 

enzyme that generates mitochondrial ROS, thereby signaling the cell to undergo apoptosis. 

Thus p66shc is proapoptotic in function. In the presence of apoptotic signals, p66shc oxidizes 

cytochrome c and generates H2O2. Thus, a fraction of electrons from the electron transport 

chain are diverted from cytochrome c to p66shc under conditions of stress leading to the 

generation of H2O2.  

p66shc is a life span determinant in mammals. p66shc null mice have shown decreased 

aging related diseases like atherosclerosis17. Intracellular ROS levels are significantly reduced 

in p66shc-/- cells and these cells are resistant to apoptotic agents such as staurosporine and 

ultraviolent light17. In the presence of apoptotic signals, p66shc undergoes different modifications. 

The cytosolic p66shc is serine-phosphorylated and cytosolic levels go up. It was observed that 

phosphorylation of p66shc is essential for its apoptotic function. However, translocation of serine-

phosphorylated p66shc from cytosol to mitochondria is not in significant measure, hence serine 

phosphorylation is believed to have non-mitochondrial functions17. The mitochondrial p66shc 

which under basal conditions is part of a high molecular weight complex that includes members 

of the TIM-TOM import complex gets detached from the complex and is released as a 
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monomer17. This monomer increases mitochondrial H2O2 levels and results in mitochondrial 

swelling and apoptosis. 

1.3 Regulation of cytochrome c release 

When a cell encounters and succumbs to apoptotic signals, one of the first steps of 

apoptosis is the release of cytochrome c and other proapoptotic factors into the cytosol8. For 

this to be achieved, cytochrome c has to first mobilize from the inner mitochondrial membrane   

(IMM) and then translocate to the outer mitochondrial membrane (OMM) and into the cytosol8.  

1.3.1 Detachment of cytochrome c from inner mitochondrial membrane 

Several mechanisms of cytochrome c mobilization from the IMM have been proposed so 

far. The predominant hypothesis, however, is that oxidized cardiolipin has a low affinity for 

cytochrome c and thus results in detachment of cytochrome c. Cardiolipin can be oxidized by 

cytochrome c when in the cytochrome c-cardiolipin complex, and by ROS8. 

Another mechanism of cytochrome c mobilization is by increased cytosolic Ca2+, which 

weakens the electrostatic interactions between cytochrome c and cardiolipin thereby triggering 

cytochrome c release. 

1.3.2 Release of cytochrome c from outer mitochondrial membrane 

After cytochrome c is mobilized from the IMM it is translocated into the cytosol through 

the OMM. Since the OMM is usually impermeable to proteins, mitochondrial outer membrane 

permeabilization (MOMP) precedes the release of cytochrome c into the cytosol8. Though the 

nature of the formation of these openings is not fully understood, many direct and indirect 

mechanisms have been proposed to date. 
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1.3.2.1 Role of BCL2 family in pore formation 

The BCL2 family of proteins are important regulators of apoptosis. The members of the 

family can be classified into two sub-groups based on their function: pro-apoptotic and anti- 

apoptotic. The BCL2 family of proteins possesses four conserved α-helical segments called BH 

domains: BH1, BH2, BH3, BH49. While most of the anti-apoptotic members of the BCL2 family 

display sequence conservation in all the four domains, the pro-apoptotic members have less 

sequence conservation of the BH4 domain9. The pro-apoptotic members are further divided into 

two classes: one contains BH1-3 domains, e.g., Bax and Bak. These are also called effector 

proteins. The second group includes proteins that contain only the BH3 domain, e.g., BID and 

BAD. 

When inactive, Bax is in the cytosol as a monomer. Sometimes Bax is seen loosely 

associated to the mitochondrial outer membrane. In the presence of apoptotic stimuli, Bax gets 

activated and translocates to the mitochondrial outer membrane where it inserts itself into it. 

Here it undergoes oligomerization and contributes to the formation of pores in the membrane. 

Unlike Bax, in a non-apoptotic cell Bak resides in the mitochondrial outer membrane in its 

inactive form. However, when it encounters apoptotic signals it undergoes oligomerization8. 

When both Bax and Bak are activated and present on the OMM they form large openings in the 

OMM, thus facilitating cytochrome c release into the cytosol along with other pro-apoptotic 

proteins.  

The BH3 only proteins Bad and Bid are pro-apoptotic and activate Bax and Bak proteins. 

When active, Bid known as tBID induces oligomerization of Bax and Bak triggering the 

formation of pores in the outer mitochondrial membrane to release IMS proteins into the cytosol. 

The anti-apoptotic members of the BCL2 family of proteins, e.g., BCL2 and Bcl-xL, 

prevent MOMP so that cytochrome c is not released into the cytosol. These antagonists either 



www.manaraa.com

9 

 

 

bind to Bax and Bak to inhibit their oligomerization or they bind to BH3 only proteins and stop 

their pro-apoptotic functions. 

1.3.2.2 Role of Ca 2+ in the release of cytochrome c  

Ca2+ acts as an important regulator of cytochrome c release by regulating 

phosphorylation of pro-apoptotic members of the BCl2 family. For example, elevated cytosolic 

Ca2+ levels activate calcineurin, which in turn dephosphorylates Bad promoting its 

heterodimerization with Bcl-xL and thus apoptosis18. In addition, elevated Ca2+ levels regulate 

Bim phosphorylation to promote its pro-apoptotic function8. 

Mitochondria and endoplasmic reticulum are the major Ca2+ stores in a cell. The Ca2+ in 

the mitochondrial matrix favors mitochondrial permeability transition (MPT) by aiding 

permeability transition pores (PTP) to open20. The Ca2+ induced opening of PTP results in loss 

of membrane potential which results in the swelling of mitochondrial matrix and finally leads to 

the release of cytochrome c from the IMS into the cytosol. Low levels of cytochrome c, once 

released, interact with inositol1,4,5 phosphate (IP3) receptors of the endoplasmic reticulum and 

triggers Ca2+ release from the ER to the cytosol20. This Ca2+ further induces PTP to open thus 

releasing more cytochrome c into the cytosol8. 

1.3.2.3 Effect of cytochrome c phosphorylation on respiration kinetics and apopto tic 

function 

Recent studies from our group and others have shown that mitochondria are targeted by 

cell signaling pathways. These studies have shown that cytochrome c undergoes reversible 

phosphorylations and thus could be part of a cell signaling network. The kinases and 

phosphatases involved in these cell signaling pathways remain elusive and research on this 

aspect has gained much interest. To date, four phosphorylation sites have been mapped on 
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cytochrome c by mass spectrometry: Tyr97 in cow heart20, Tyr48 in cow liver21, and Thr28 and 

Ser4722 in human skeletal muscle. 

In 2006, Lee et al isolated cytochrome c from cow heart tissue under conditions that 

preserve physiological phosphorylation and found that the protein was tyrosine 

phosphorylated20. Mass spectrometry assigned Tyr97 as the phosphorylated residue. Spectral 

analysis of purified oxidized heart cytochrome c showed a shift of the Met80 absorption band at 

695nm to 687nm.This indicated that phosphorylation on Tyr97 had affected the functionality of 

the protein, specifically the heme moiety. The authors also tested the effect of this 

phosphorylation on oxygen consumption of purified cow liver CcO and found that the 

phosphorylated cytochrome c followed sigmoidal kinetics as opposed to cytochrome c treated 

with alkaline phosphatase, which followed hyperbolic kinetics. 

In 2008, Yu et al analyzed phosphorylation of cytochrome c isolated from cow liver, and 

by mass spectrometry found out that it was phosphorylated on a novel site, Tyr4821. Analysis of 

oxygen consumption was performed using isolated cow liver CcO with cow liver cytochrome c 

that was phosphorylated on Tyr48, and cow liver cytochrome c treated with alkaline 

phosphatase. Since Tyr48 is structurally facing towards the inside of the protein, 

phosphorylation on this residue could alter the structure of the protein thereby inhibiting its 

function. This was corroborated by the turnover number of Tyr48 phosphorylated vs 

phosphatase treated cow liver cytochrome c, which was 3.7s-1 and 8.2s-1, respectively. 

However, since tissue isolated cytochrome c usually is a mixture of phosphorylated as 

well as unphosphorylated forms it is difficult to determine the true implications of these 

phosphorylations. To this end, Pecina et al used a prokaryotic over-expression system to 

generate phosphomimetic mutants of Tyr48 phosphorylated cytochrome c23. They mutated the 

Tyr48 residue to Glu so that the negative charge of Glu may mimic that of the phosphate group 
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of phosphorylated Tyr48. They also introduced two controls: a wild type cytochrome c protein 

and a non phosphorylatable cytochrome c control by mutating Tyr48 to Phe. They next analyzed 

oxidation of these wild type and mutant forms of cytochrome c in the reaction with CcO. They 

observed that the phosphomimetic substitution inhibits oxidation by liver CcO where Km values 

increase from 1.1µM for wild type to 3.7µM for the Tyr48Glu mutant. They next analyzed the 

capability of these three cytochrome c proteins to initiate apoptosis by downstream activation of 

caspase 324. To measure activation of caspase 3 they used an artificial caspase 3 substrate 

which gave a fluorescent signal upon cleavage by caspase 3. They observed that both the wild 

type and Tyr48Phe mutants displayed similar caspase 3 activities while the Tyr48Glu mutant did 

not give any measurable signal for caspase 3 activity. These data suggest that phosphorylation 

of cytochrome c controls the execution of apoptosis, a process that determines the cell’s fate. 

1.4 Structure of cytochrome c 

Horse heart cytochrome c was one of the first proteins to be crystallized, in the late 

1960’s25. Cytochrome c has a heme group with an iron atom at the center which is involved in 

the electron transfer activity of the protein. High resolution crystal structure of cytochrome c 

revealed that this heme group is covalently attached to the peptide chain through thioether 

linkages with cysteine 14 and 17 residues5. Cytochrome c is a highly basic protein due to high 

lysine content and has an isoelectric point of 9.6. The Fe atom of heme is in hexacoordinate 

configuration with Met80 and His18 residues. This increases the stability of the protein. 

Cytochrome c in its oxidized state displays a weak absorption band at 695nm due to the Fe-

Met80 bond. Only functional cytochrome c displays this band and hence it is a marker for the 

protein’s integrity and correct folding. 

Cytochrome c is a nuclear encoded protein which is translated in the cytosol to form 

apocytochrome c. This apocytochrome c is then translocated to the mitochondrial 
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intermembrane space where the enzyme heme lyase catalyses the covalent attachment of a 

heme group to cysteines 14 and 17 through thioether linkages5. Attachment of heme results in 

cytochrome c taking its native compact conformation. Mitochondrial import of cytochrome c 

neither requires the presence of ATP nor does it depend on mitochondrial membrane potential. 

Sequence analysis of all the 285 known cytochrome c sequences shows that the 

number of amino acids ranges from 104-114 in most mitochondrial cytochrome c species of 

which only a few amino acids are highly conserved throughout evolution24. These key residues 

play an important role in maintaining the structure, function, folding, and stability of the protein. 

The key residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, 

Pro71, Pro76, Thr78, Met80, and Phe8224. 

Cys14 and Cys17 of cytochrome c are part of a pentapeptide motif, CXXCH, and 

covalent attachment of the heme group to this motif is an important step in cytochrome c 

maturation. Mutational studies show that these cysteine residues are required for the 

translocation of apocytochrome c from cytoplasm to mitochondria26. 

His18 and Met80 are the two axial ligands of cytochrome c, where His18 binds heme 

from the proximal front while Met-80 is on the distal side in the conventional view (Fig.1). His18 

is known to stabilize the heme of cytochrome c24. It is found that Met80 favors a high reduction 

potential of cytochrome c by maintaining it in the reduced state. Met80 mutants have shown 

their inability to form axial coordination with heme. For example, Met80Ala mutants do not form 

axial co-ordination with heme thus rendering it in penta-coordinate state.24, 27 

The side chain of Trp59 is hydrogen bonded to heme propionate side chain and gives a 

hydrophobic environment to the heme crevice. This hydrophobic interaction contributes to the 

stability of the cytochrome c protein. Studies with Ser, Cys, and Gly mutants of Trp 59 showed 

that they were thermo-labile and non-functional24. 
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Another well conserved residue is Tyr67 which is located within the helix. The hydroxyl 

group of Tyr67 has influence on its redox properties. For example, in its reduced state the 

hydroxyl group forms hydrogen bonds with the side chains of Asn52, Thr78, and Met80 and the 

internally bound conserved water molecule, Wat16624. However, in its oxidized state Wat166 

gets reoriented and this disrupts all of these hydrogen bonds. Hence it affects both redox 

potential and stability of the protein. 

Phe82 is located on the surface of the protein and is in close proximity to the heme. 

Studies have shown that this residue stabilizes the heme environment and the side chain of 

Phe82 maintaining the overall conformation of the protein24, 28. Thus, this residue holds an 

important role in maintaining the functionality of cytochrome c. 

There are three prolines in the cytochrome c amino acid sequence and they are highly 

conserved throughout evolution. They are at positions 30, 71 and 76. Their rigid cyclic structure 

contributes to the overall conformational integrity of the protein. For example, Pro30 holds His18 

in place within the heme crevice24, 26 and forms the closed crevice structure of cytochrome c. 

Lys72 is an important residue for cytochrome c binding to CcO as well as bc1 complex. 

Studies have shown that in yeast trimethylation of this residue favors transport of 

apocytochrome c to the mitochondria. However, it is unmethylated in higher organisms. Lys 72 

plays a key role in the cytochrome c-Apaf1 interaction.24, 29 

As with other proteins that are synthesized in the cytosol, cytochrome c is also subject to 

posttranslational modifications. This may include modifications like cleavage of the N-terminal 

methionine residue and N-terminal acetylation.30 In vitro studies have shown that N-terminal 

acetylation of cytochrome c prevents protein degradation. Besides methylation31 and 

phosphorylation, cytochrome c can also undergo nitration. In vivo nitration of human cytochrome 

c has been observed in 3 tyrosine residues, namely Tyr67, Tyr7432, and Tyr9733. Being solvent 
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exposed, Tyr74 and Tyr97 are preferred for nitration. In vitro studies show that nitration of these 

residues impairs both respiration and apoptosis, while it enhances the peroxidase activity of 

cytochrome c. 

Though in vivo nitration of Tyr46 and Tyr48 has not been reported, in vitro studies have 

been performed to understand potential effects of nitration of these residues and it has been 

shown that nitration of these residues result in formation of a non-functional apoptosome thus 

hindering apoptosis34. 

Owing to the high lysine content in cytochrome c it could be possible that the protein 

undergoes yet another modification, acetylation30. Besides neutralizing the positive charge of 

the protein rendered by the lysine content, acetylation could also increase its hydrophobicity as 

well as have effects on the protein’s conformational integrity. Though the functional relevance of 

acetylation is not fully understood it has been shown that cytochrome c, when chemically 

acetylated, could impact its redox properties. 
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Chapter 2  

Characterization of bovine cytochrome c from kidney tissue  

2.1 Background of the study 

Regulation of the proteins of OxPhos machinery by cell signaling is a recent research 

area. So far, over 20 phosphorylation sites have been mapped on mammalian OxPhos proteins. 

For almost all of those phosphorylations the effect on enzyme function and the kinases and 

phosphatases mediating these (de-)phosphorylations remain unknown. 

In the recent past the Hüttemann lab reported two novel phosphorylation sites, Tyr97 

and Tyr48 of bovine heart and liver, respectively. Since mass spectrometry unambiguously 

assigned two distinct phosphorylation sites in the two tissues, it was proposed that cell signaling 

takes place in a tissue specific manner. To further test this hypothesis additional functional 

experiments were designed. The effects of these Tyr phosphorylations on the functions of 

cytochrome c protein, particularly respiration and apoptosis, were assessed. Results revealed 

that both phosphorylations led to an inhibition of cytochrome c in the reaction with CcO. This 

fortified the working model of the Hüttemann lab that under healthy conditions cytochrome c is 

phosphorylated and maintains the cell in a “controlled” respiration state to avoid high 

mitochondrial membrane potentials that are known to cause excessive formation of ROS. Tyr48 

phosphomimetic mutational studies of cytochrome c showed that the mutants were incapable of 

initiating apoptosis by caspase activation. 

Also reported are the phosphorylations of Thr28 and Ser47 of human skeletal muscle 

suggesting that a different cell signaling pathway might be responsible for it.  

Based on the above reports our group hypothesized that phosphorylation sites were tissue 

specific. To obtain further support for this concept, bovine kidney tissue, which has not been 
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previously analyzed, was chosen to test for any novel phosphorylation sites and their possible 

effects on its function. 

2.2 Isolation of cytochrome c from bovine kidney tissue 

Fresh cow kidneys were purchased from a slaughter house, transported on dry-ice to the 

lab, and stored in the -80oC freezer until used. Cytochrome c was isolated from the kidney 

tissues using the acid extraction method as described in detail in reference 1 (see Fig. 2 for a 

schematic representation). All steps were performed on ice. The tissues were ground and 

homogenized in 100 mM phosphate buffer (pH7.4), whose pH was lowered to 4.5 with acetic 

acid1. The homogenate was incubated in this low pH buffer overnight at 4ºC.Most cellular 

proteins aggregate and precipitate at low pH, while cytochrome c stays in solution. Moreover, at 

low pH cellular phosphatases are inactive. 

The following day the homogenate was centrifuged at 8500rpm for 35min (Sorvall SLC-

6000 rotor). The pellets were discarded (cell debris and precipitated proteins) while the 

supernatants were pooled and pH readjusted to 7.4 with NaOH/KOH and protease and 

phosphatase inhibitors were added immediately to the solution to inhibit the activity of proteases 

and phosphatases that might be reactivated at physiological pH. This mixture was incubated at 

4ºC for 20min before the last centrifugation step. Cytochrome c was purified from this 

supernatant by ion exchange chromatography. First, the solution was applied to a DE52 anion 

exchange column, which was equilibrated with phosphate buffer, pH7.4, 3.6mS/cm 

conductance. Cytochrome c being positively charged, was collected in the flow-through and the 

pH was adjusted to 6.5. The flow-through was loaded onto a CM52 cation exchange column, 

which was equilibrated in 20 mM phosphate buffer, pH6.5 and conductance 5.5mS/cm1. The pH 

and conductivity of the flow-through was readjusted to that of a CM52 cation exchange column 

before applying it to the column. The positively charged cytochrome c protein bound to the 

CM52 column. In order to obtain a single cytochrome c fraction, the protein was oxidized on the 
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column using 2mM K3Fe(CN)6 and was then eluted out by a step elution method using 30, 50, 

80, 120 and150mM phosphate buffers.  

For better purity, the DE52 and CM52 column steps were repeated. This was followed 

by HPLC size-exclusion chromatography, equilibrated with 150mM phosphate buffer, pH6.5 to 

obtain a highly pure and homogeneous fraction of cytochrome c usually containing a mixture of 

phosphorylated and dephosphorylated forms of the protein. Cytochrome c protein was 

concentrated under vacuum to a 2mL fraction followed by desalting by centrifugation using 

Amicon Ultra-15 3k units (Millipore, Billerica, MA). The desalted protein was aliquoted and 

stored at -80oC till used. 

                                              

Bovine Kidney                       DEAE column              CM column                       HPLC                    

Figure 2. Schematic diagram of cytochrome c isolation. 

2.3 Protein concentration and purity 

The isolated protein was reduced with 100mM sodium dithionite (Na2S2O4) following 

desalting using NAP-10 columns (GE Healthcare, Piscataway, NJ) and analyzed on a Jasco V-

570 double beam spectrophotometer (2nm band width)1. The concentration of reduced 

cytochrome c was determined by the difference spectra at 550 nm of the reduced minus 

oxidized form, and calculated using ɛ(red.–ox.)550 nm=19.6 mM−1 cm.−1 
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To check for the purity of the isolated protein, samples were loaded onto a 12% Tris tricine SDS 

PAGE gel and visualized by Coomassie staining. 

2.4 Western blotting  

Next, cytochrome c was subjected to SDS gel electrophoresis. 12% Tris tricine gels 

were prepared and denatured proteins were loaded alongside with suitable controls. After the 

run was complete the proteins were transferred to PVDF membranes (0.2µm, Bio Rad) using a 

semi-dry blot apparatus (BioRad). Care was taken to pre-soak the membranes as well as the 

gel in the transfer buffer (25mM Tris, 192mM glycine, 20% methanol) used for blotting1. Transfer 

was performed at 15V for 1hr. After transfer, the membranes were blocked in their respective 

blocking buffers (Table1). Blocking was done under gentle shaking at room temperature for 2h. 

After blocking, the blots were incubated with their respective primary antibodies (Table1) and left 

under shaking overnight, at 4ºC. Each incubation was followed by washing the blots with 1X 

TBS-T 6 times at 10 min intervals. The blots were then incubated with their respective 

secondary antibodies (Table1). After washing with 1X TBS-T, the blots were used to detect 

signals using the ECL detection kit.  

Name of the 

blot 

Blocking agent  Primary Ab Secondary  Ab Detection kit  

Anti- 

cytochrome c 

5%NFDM in 

1XTBS-T 

Anti- 

Cytochrome c, 

1:10000 

IgG HRP-anti 

mouse(1:10000) 

ECL 

Anti-

phosphoSerine 

2% BSA in 1X 

TBS-T 

Anti-phospho 

serine antibody 

cocktail, 1:5000 

IgM HRP-anti 

mouse(1:10000) 

ECL 

Table 1. Antibodies for Western blots  
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2.5 Mass spectrometry of purified cytochrome c to detect site- specific 

phosphorylation(s) 

Purified cytochrome c was sent to our collaborator, Dr. Arthur Salomon (Brown University, 

Rhode Island), who is an expert in protein phosphorylation, for assignment of phosphate groups 

by mass spectrometry on specific sites of cytochrome c. 

2.6 Bacterial overexpression of mutant cytochrome c proteins  

The pLW01 vector is a suitable prokaryotic expression system to generate the 

cytochrome c constructs since the vector also has the cDNA encoding the heme lyase (CYC3) 

gene which is necessary for the covalent attachment of the heme group to the cytochrome c 

apoenzyme but missing in bacteria. The vector, originally containing the horse cytochrome c 

cDNA sequence, was a kind gift from Dr. Lucy Waskell (University of Michigan) and was earlier 

used in our lab to create rodent cytochrome c constructs.2 Site directed mutagenesis was 

performed using 5' GCT GGA TTC GAG TAC ACA GAT 3' and 5' GGA TTC GCC TAC ACA 

GAT GC 3' to mutate Ser 47 of cytochrome c to phosphomimetic glutamic acid and 

unphosphorylatable alanine, respectively. The outer primers that amplified the entire 

cytochrome c cDNA contained NcoI and BamHI restriction sites and were 5' AAT TTA CCA 

TGG GTG ATG TTG AAA AAG 3' and 5' AAT AAA GGA TCC AGT GGA ATT ATT CAT 3' 

respectively (refer Table 2) .The mutated cytochrome c cDNA sequences were later subcloned 

into the pLW01 bacterial expression plasmid after restriction digested by NcoI and BamHI. The 

generation of the mutant constructs was confirmed by sequencing and the correct mutants were 

used to transform competent E. coli cells to overexpress the protein. The clones were 

inoculated into 20 mL TB medium (Difco, BD, Franklin Lakes, NJ) containing 100 µg/mL 

carbenicillin and grown overnight at 37⁰C under shaking. These cultures were used to inoculate 

4 L of 100 µg/mL carbenicillin-containing TB medium that was grown until it reached an OD600 of 
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2-32. At this time, the expression of cytochrome c was induced by addition of 100mM isopropyl 

β-D-1-thiogalactopyranoside (IPTG), and the protein was overexpressed for 6 h at 37⁰C. The 

cells were harvested by centrifugation for 40 min at  4500 rpm, 4⁰C and the pellets were 

immediately stored at -80⁰C until used. 

Name Primer Sequences Tm (oC) 

S47A, 

Forward primer 

5' GGA TTC GCC TAC ACA GAT GC 3' 55.9 

S47A, 

Reverse primer 

5' GCA TCT GTG TAG GCG AAT CC 3' 55.9 

S47E, 

Forward primer 

5' GCT GGA TTC GAG TAC ACA GAT 3' 54.3 

S47E, 

Reverse primer 

5' ATC TGT GTA CTC GAA TCC AGC 3' 54.3 

Outer  

forward primer  

5' AAT TTA CCA TGG GTG ATG TTG AAA AAG 3' 56.7 

Outer  

Reverse primer 

5' AAT AAA GGA TCC AGT GGA ATT ATT CAT 3' 54.7 

Table2. Primers used in site directed mutagenesis a nd overlap extension PCR 

2.7 Purification of cytochrome c from bacterial pellets 

The bacterial pellets were thawed overnight at 4ºC. For every 10gm pellet 100ml of lysis 

buffer was used. The lysis buffer was 20mM phosphate buffer, pH7.4 supplemented with 

protease inhibitors. The pellet was resuspended in the lysis buffer using a hand homogenizer. 

This was followed by lysis via French Pressure Cell Press (American Company, Aminco). 
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Figure 3. French Pressure Cell Press.  

The lysed cells were centrifuged at 15000rpm for 45min to remove the pellet with cell 

debris. The pH of the supernatant was adjusted to 7.4 and conductivity matched with that of the 

DE52 column before it was loaded onto the equilibrated column. The flow-through was collected 

and pH readjusted to 6.5 and conductivity matched with that of the equilibrated CM52 column. 

The flow through was then loaded onto the column where the positively charged cytochrome c 

binds. The column was washed with equilibration buffer (30mM phosphate buffer, pH6.5). 

Cytochrome c was eluted from the column using a high salt buffer (0.5M NaCl in 30mM 

phosphate buffer, pH 6.5). The eluted protein was desalted by centrifugation using Amicon 
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Ultra-15 3k units (Millipore, Billerica, MA). Buffer exchange was performed in deionized water 

and the protein aliquoted and stored in -80⁰C. 

2.8 In vitro functional characterization of cytochrome c mutant proteins 

2.8.1 CcO activity measurements using the Clark type oxygen  electrode system 

Our lab has a stock of regulatory competent CcO which was isolated from bovine liver 

under conditions preserving its phosphorylation status3. Liver type CcO is the same isozyme as 

expressed in kidney. An aliquot of CcO was diluted to 3µM final concentration in the presence of 

a 40-fold molar excess of cardiolipin and 0.2 mM ATP in CcO measuring buffer (10mM K-

HEPES (pH 7.4), 40mM KCl, 2mM EGTA, 10mM KF, 1% Tween 20) and dialyzed overnight at 

4ºC to remove cholate bound to CcO during enzyme purification. Respiration of CcO (54.54nM) 

was analyzed in a closed chamber equipped with a micro Clark-type oxygen electrode 

(Oxygraph system; Hansatech, Pentney, UK) at 25ºC in 220µL of CcO measuring buffer and 20 

mM ascorbate as electron donor2. Increasing amounts of purified cytochrome c variants (0-15 

µM) were added, and oxygen consumption was recorded and analyzed with the Oxygraph 

software (Hansatech).2 The activity was expressed as turnover number (TN) (min-1). 

2.8.2 Caspase 3 activity induction by cytochrome c mutant proteins  

An in vitro approach with cell free extracts was used to assess the capability of  

cytochrome c mutants to induce caspase 3 activity. Cytoplasmic extracts were prepared from a 

HeLa cell line. Cells were harvested from eight 150mm plates4. After washing the plates twice 

with 1X PBS the cells were harvested following centrifugation at 4ºC, 800rpm, 5 min. This was 

repeated once after which the pellet was resuspended in 5mL of ice cold cell extraction buffer 

(20mM HEPES, pH7.5, 10mM KCl, 1.5mM MgCl2, 1mM EDTA, 1mM EGTA, 1mM dithiothreitol, 

1mM PMSF) followed by centrifugation at 4ºC, 800 rpm, 5 min. The cell pellet was then gently 

resuspended in the extraction buffer and immediately transferred to a dounce homogenizer and 
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kept on ice for 15 min for the cells to swell2. After swelling, the cells were broken open using a 

B-type pestle. Cell breakage was confirmed using a microscope and lysates transferred to 

Eppendorf tubes and centrifuged at 4ºC, at 15000g for 15min to remove nuclei and other 

organelles. The resultant supernatant is the cytosolic fraction. The protein concentration of the 

lysate was measured using the Dc assay kit (Bio Rad, Hercules, CA). The cytosol extract was 

diluted to a concentration of 2mg/mL for the caspase assay. The kit used was the EnzChek 

Caspase-3 assay kit (Invitrogen, Carlsbad, CA) with rhodamine 110-linked DEVD tetrapeptide 

as an artificial substrate of caspase-3, which fluoresces upon cleavage. The cytosolic extract 

from HeLa cells (2mg/ml) was incubated with individual cytochrome c mutants (15µg/ml) at 37ºC 

for 2.5h. After incubation, 10µl from the activated extracts were aliquoted and assayed for 

caspase 3 activity in triplicate. Also, in parallel, a similar assay was performed in the presence 

of caspase 3 inhibitor. 

Fluorescence was detected using a Fluoroskan Ascent FL plate reader (Labsystems, 

Thermo Scientific, Waltham, MA), excitation filter 485nm/14nm bandwidth, emission filter 

527nm/10nm bandwidth. Fluorescence values were acquired in 30min intervals for 3h. Amount 

of cleaved substrate was calculated from the rhodamine 110 calibration curve, and data were 

expressed in pmol of DEVD3 min-1 (mg of protein)-1.  

2.8.3 Measurement of cytochrome c redox potential  

The midpoint redox potential (E0’) was analyzed spectrophotometrically using 2,6 

dichloroindophenol (DCIP,E0’=237 mV) as a reference compound, which has an absorption 

band at 600 nm in its oxidized state5. One milliliter of cytochrome c solution (2mg/mL) was 

mixed in a large spectrophotometric cuvette with 2mL of 50mM citrate buffer, pH6.5, 0.1mL of 

1mM DCIP, and 50µL of 1mM K3Fe(CN)6 to fully oxidize cytochrome c. Absorbances 

corresponding to fully oxidized cytochrome c (A550-A570) and DCIP (A600) were recorded using a 
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Jasco V-570 double beam spectrophotometer. The mixture was then sequentially reduced by 

1µL additions of 5mM ascorbate (pH 6.5), and absorbance values were acquired at each step. 

When readings became constant, a few grains of Na2S2O4 were added to fully reduce 

cytochrome c and DCIP. For each step, ratios of oxidized and reduced forms of both 

compounds were calculated. Data obtained were plotted as log(DCIPOX/DCIPRED) versus 

log(CytOX/CytRED), yielding a linear graph with a slope of n-DCIP/n-cytochrome c and a y-axis 

intercept of n-cytochrome c / 59.2(E cytochrome c – E DCIP). These values were used to 

calculate the E0’ of cytochrome c from the Nernst equation. 

2.9 Results  

2.9.1 Western blotting 

Cytochrome c was purified from bovine kidney tissues under conditions that preserved 

its physiological phosphorylation status. After eluting cytochrome c from the CM52 cation 

exchange column it was passed through an HPLC gel filtration column to increase the purity of 

the protein. The protein was found to be clean on a Coomassie gel (Fig. 4). Note that the 

weaker higher band (24kDa) represents the cytochrome c dimer, which is sometimes observed. 
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Figure 4. Coomassie gel of cytochrome c purified from kidney.  Lane 1: Page Ruler 
prestained protein ladder,10-170 kDa, Lane 2: cow heart cytochrome c from Sigma(2µg) Lane 
3: 1XLDS and Lane 4: isolated cow kidney cytochrome c (2µg). 

Western blotting with anti-phospho Serine antibodies was performed to analyze the cytochrome 

c phosphorylation status. Both gave strong signals for phosphorylation as shown below. 

 

Figure 5. Western blot with anti-cytochrome c antibodies . Lane 1: Page Ruler pre-stained 
protein ladder, 10-170 kDa, Lane 2: cow heart cytochrome c from Sigma (2µg), Lane 3: empty, 
Lane 4: cytochrome c purified from cow kidney tissue (2µg).  
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Figure 6. Western blot with anti-phospho serine ant ibodies.  Lane 1: Page Ruler prestained 
protein ladder, 10-170 kDa, Lane 2 & Lane 4: cytochrome c  purified from cow kidney tissue 
(1µg and 2µg respectively), Lane 3: empty, Lane 5: positive control, ovalbumin. 

2.9.2 Mass spectrometry of cytochrome c to detect site-specific phosphorylation(s) 

Because the anti-phospho-Ser/Thr antibodies are not highly specific due to the small 

epitope they recognize and in order to assign the specific phosphorylation sites, isolated 

cytochrome c was digested with trypsin and analyzed by immobilized metal affinity 

chromatography/nano-liquid chromatography/electrospray ionization mass spectrometry (IMAC/ 

nano LC/ESI-MS/MS). In this method the phosphorylated peptides are enriched before being 

subjected to tandem mass spectrometry for fragment examination. 

The analysis revealed Ser47 phosphorylation of cytochrome c on the peptide, 

KTGQAPGFpSYTDANK . Depending on the individual kidney cytochrome c isolation two 

additional phosphorylation sites were revealed, Thr28 and Thr 51 (data not shown). 
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Figure 7. Nano-LC/ESI/MS/MS spectrum of KTGQAPGFpSY TDANK.  Peptides were eluted 
into the mass spectrometer with an HPLC gradient (0-50% acetonitrile, 0.1M acetic acid in 
30min). The mass spectrometer acquired top 3 data dependent ESI MS/MS spectra. The 
phosphorylation site was revealed by fragment ions y6 and y7 where y7-y6 gave the mass of 
phosphoserine. 

2.9.3 Purification of cytochrome c from bacterial pellets  

Phosphomimetic substitution is a commonly used method to study the in vitro effects of 

protein phosphorylation. The commonly used amino acids as phosphomimetic substitutes are 

negatively charged glutamate and aspartate. 

This study was aimed at studying the effects of Ser47 phosphorylation of cytochrome c. 

The bacterial pLW01 expression vector was used to generate the rat cytochrome c constructs. 

The vector particularly suits the study since it also encodes the heme lyase gene which is 
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required but not present in bacteria for covalent attachment of the heme group to apo-

cytochrome c. Besides wild-type cytochrome c, site directed mutagenesis was performed to 

generate Ser47Glu and Ser47Ala mutants. The correct mutants were confirmed by sequencing 

and further used to transform One shot BL21 (DE3) E.coli cells for cytochrome c 

overexpression. The bacterial pellets were lysed and French-pressed before purification through 

ion exchange chromatography. Five to ten mg of purified cytochrome c protein per liter of 

bacterial culture was obtained. Purity of the proteins was checked on SDS-PAGE gel followed 

by Coomassie blue staining. Absorption spectra revealed that all proteins are fully reducible.  

 

Figure 8. Coomassie gel showing purity of the harve sted mutant proteins. 

Lane 1: Page Ruler pre-stained protein ladder, 10-170 kDa, Lane 2: Wild type 
cytochrome c, Lane 3: S47A mutant protein, Lane 4: S47E mutant protein. 

 

~12kDa 
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Figure 9. Absorption spectra of purified cytochrome  c mutant proteins.  Spectral analysis 
of the cytochrome c variants( blue- WT, green- S47A, brown- S47E) indicated that they are 
correctly folded, including the presence of the weak 695nm absorption band in the oxidized 
spectrum (not shown). 

2.9.4 CcO activity measurements using Clark type oxygen ele ctrode system  

A kinetic study of purified cytochrome c oxidation with bovine liver CcO was performed. 

Purified mutant cytochrome c proteins were used, with WT cytochrome c as control. 

Interestingly, results revealed that CcO oxidizes Ser47Glu mutant cytochrome c at significantly 

lower rates as compared to WT and Ser47Ala controls. Vmax of the Ser47Glu mutant was 

decreased by 40-50% compared to WT and Ser47Ala controls suggesting that this 

phosphorylation down-regulates mitochondrial ETC electron flux. 
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Figure 10. C cO activity of purified cytochrome c mutant proteins. Vmax of S47E mutant is 
reduced by ~40- 50% compared to WT and S47A controls. 

2.9.5 Caspase 3 activity induction by cytochrome c mutant proteins 

To assess the effect of mutation on the ability of the protein to participate in apoptosis, 

caspase 3 activity was measured. For this purpose wild type cytochrome c, Ser47Glu, and 

Ser47Ala mutants each were incubated with cytosolic extracts from HeLa cells. Strikingly, the 

results reveal that mutation to the Ser47 residue leads to a loss of the protein’s ability to initiate 

apoptosis. Both mutations result in negligible caspase activity with cytosolic extracts from HeLa 

cells. This suggests that Ser47 might be a key residue to regulate the protein’s ability to trigger 

apoptosis. 
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Figure 11. Caspase-3 activity after incubation with  purified cytochrome c mutant 
proteins. The ability to trigger apoptosis is abolished in both S47E as well as S47A mutants. 

2.9.6 Measurement of cytochrome c redox potential 

To effectively function as a mobile electron carrier in the electron transport chain    

cytochrome c must have a redox potential value between those of Complexes III and IV. As part 

of the initial characterization, the redox potential of the cytochrome c mutants and the WT was 

measured using the equilibration method. The wild type cytochrome c redox potential value was 

272 ± 2mV while the mutants displayed slightly lower values 270 ± 1mV and 256 ± 12mV for 

Ser47Ala and Ser47Glu mutants, respectively.  
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Figure 12. Redox potential assay of cytochrome c mutant proteins   

2.10 Future directions 

Cytochrome c plays diverse roles in the life and death activities of a cell. Keeping this 

mind one would expect tight regulatory mechanisms governing its functions. However, 

regulation of cytochrome c by cell signaling was not given serious consideration until recently 

when our group found and published that cytochrome c was phosphorylated on Tyr97 and 

Tyr48 in bovine heart and liver and that these phosphorylations resulted in a partially inhibited 

(“healthy’) mitochondrial respiration status of a cell while preventing apoptosis, in a tissue 

specific manner. In the present study on bovine kidney cytochrome c it was found that Ser47 

was phosphorylated. Phosphomimetic mutants were generated and used to carry out in vitro 

assays to characterize this protein. In this study, CcO activity, caspase3 activity, and redox 

potential measurements of the phosphomimetic mutants were analyzed alongside controls. 

It is known that under stress conditions cytochrome c can act as cardiolipin peroxidase 

thereby affecting mitochondrial membrane integrity leading to its release into the cytosol. Also 
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known is that under apoptotic stress unphoshorylated cytochrome c can generate ROS  

together with p66shc by channeling electrons from electron transfer chain to p66shc which will in 

turn generate hydrogen peroxide. Future experiments will be done to measure the cardiolipin 

peroxidase activity of the phosphomimetic mutants vs unphosphorylated controls. Also 

measured will be the ROS generation via p66shc. 

Next in line would be crystallographic studies to study the effects of these mutations on 

the structure of the protein.  

Also of interest would be to perform a similar set of experiments to functionally 

characterize Ser47 phosphorylated cytochrome c in a mammalian cell culture system to further 

confirm our results. Another important research direction would be to identify kinase(s) and 

phosphatase(s) responsible for the regulation of cytochrome c, which would be helpful in 

designing novel therapeutic strategies for treatment of diseases such as cancer where the cells 

exhibit mechanisms to evade apoptosis perhaps mediated by hyper-phosphorylation of 

cytochrome c, as well as neurodegenerative diseases, where dysfunctional mitochondrial 

respiration is a hallmark. 
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Chapter 3  

Summary  

3.1 Characterization of bovine cytochrome c from kidney tissue 

The long standing working model of our lab is that under healthy conditions    

cytochrome c is phosphorylated leading to a “controlled” respiration state by maintaining 

mitochondrial membrane potential, ∆ψm, at physiologically low levels (80-140mV) thereby 

avoiding excessive ROS production. However, under stressed conditions, cytochrome c gets 

dephosphorylated which leads to high electron transfer rates and membrane potential 

(>140mV). This hyperpolarization leads to excessive ROS production which triggers apoptosis.  

The aim of this study was to characterize the cytochrome c protein isolated from bovine 

kidney. Phosphorylation on Ser47 residue was determined by mass spectrometry. To further 

analyze the effect of this phosphorylation, phosphomimetic mutants were designed and 

generated. Preliminary studies to measure basic activities such as respiration, apoptosis, and 

redox potential were performed.  

The redox potential of the phosphomimetic mutant was slightly lower compared to WT, 

Importantly, phosphomimetic cytochrome c displayed significantly reduced CcO activity when 

compared to controls supporting our overall model of healthy (i.e., lower) respiration rates under 

normal conditions. In addition, the ability to induce apoptosis as measured by caspase 3 activity 

revealed that mutation of Ser47 almost fully diminishes the ability of cytochrome c to initiate 

apoptosis. This suggests that this Ser47 residue might be key to its proper functioning in the 

apoptotic cascade. Thus, the results of this study are squarely fitting our working model. 
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Cytochrome c is a 12.4kDa ubiquitously expressed protein known to be involved in many 

physiological processes of the cell such as respiration and apoptosis. The goal of our lab is to 

increase our knowledge of the regulation of cytochrome c in these opposite activities, and our 

working model posits that cytochrome c is decisively regulated by phosphorylation. When 

phosphorylated, cytochrome c leads to an “optimal” functioning in the electron transport chain 

by lowering electron flux, preventing harmful high mitochondrial membrane potentials and thus 

ROS production under healthy conditions. However, under cellular stress cytochrome c might 

be dephosphorylated favoring high mitochondrial membrane potentials and ROS and its 

participation in apoptosis. Our lab has previously published two phosphorylation sites in cow, 

namely Y48 in the liver and Y97 in the heart. The aim of my thesis was to identify 

phosphorylation site(s) on kidney cytochrome c and to perform functional characterization of the 

cow kidney protein. Kidney cytochrome c was found to be phosphorylated on S47 and based on 

this, suitable cytochrome c variants were over expressed in a prokaryotic system. These 

cytochrome c variants were used to study the effect of phosphorylation on the most common 

activities of cytochrome c protein i.e., cellular respiration and apoptosis. The results of the in 

vitro study revealed that the phosphomimetic mutant Ser47Glu has lower rates of respiration 
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compared to wild type as well as S47A mutant which is in line with the working model of our lab. 

In addition, any mutation of the Ser47 residue resulted in almost fully diminished caspase 

activity when compared to wild type, suggesting that this residue might be key to the regulation 

of the apoptotic activity of cytochrome c. 
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